
Subgraph Neighboring Relations Infomax for Inductive Link Prediction on
Knowledge Graphs

Xiaohan Xu1,2 , Peng Zhang1∗ , Yongquan He1,2 , Chengpeng Chao1,2 and Chaoyang Yan1,2

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

{xuxiaohan, pengzhang, heyongquan, chaochengpeng, yanchaoyang}@iie.ac.cn

Abstract
Inductive link prediction for knowledge graph aims
at predicting missing links between unseen enti-
ties, those not shown in training stage. Most previ-
ous works learn entity-specific embeddings of en-
tities, which cannot handle unseen entities. Re-
cent several methods utilize enclosing subgraph to
obtain inductive ability. However, all these works
only consider the enclosing part of subgraph with-
out complete neighboring relations, which leads
to the issue that partial neighboring relations are
neglected, and sparse subgraphs are hard to be
handled. To address that, we propose Subgraph
Neighboring Relations Infomax, SNRI, which suf-
ficiently exploits complete neighboring relations
from two aspects: neighboring relational feature
for node feature and neighboring relational path
for sparse subgraph. To further model neighbor-
ing relations in a global way, we innovatively apply
mutual information (MI) maximization for knowl-
edge graph. Experiments show that SNRI outper-
forms existing state-of-art methods by a large mar-
gin on inductive link prediction task, and verify the
effectiveness of exploring complete neighboring re-
lations in a global way to characterize node features
and reason on sparse subgraphs.

1 Introduction
Knowledge graphs (KGs) are collections of structured knowl-
edge represented by factual triples (entity, relation, entity),
which are essential for many applications, such as question
answering [Huang et al., 2019], recommendation systems
[Wang et al., 2018]. However, even state-of-the-art KGs suf-
fer from incompleteness issue, e.g. FreeBase [Bollacker et
al., 2008], and WikiData [Vrandecic, 2012]. To complete
KGs, link prediction task aims at inferring missing links be-
tween entities on original KGs. But in fact, there are many
newly emerging entities added into real-world KGs con-
stantly over time [Trivedi et al., 2017], e.g., new user added
into e-commerce database or new molecules in biomedical
KGs. In order to predict links between brand-new entities,
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Figure 1: Two explanatory cases in inductive link prediction. Meth-
ods based on enclosing subgraph (red paths) can reason on Test
graph A, but hard to handle sparse Test graph B. In contrast, our
work utilizes neighboring relations not included in enclosing sub-
graph simultaneously to build neighboring relational paths (green
paths) for reasoning on sparse Test graph B.

inductive link prediction task has been an active area of re-
search, which requires model with the inductive ability for
reasoning on graphs consisting of unseen nodes.

Whereas inductive link prediction is a difficult task as it re-
quires generalization from training entities to unseen entities.
Most previous link prediction methods [Bordes et al., 2013;
Yang et al., 2015] learn specific embedding for each entity,
which are hard to generalize to unseen entities. Recently, mo-
tivated by graph neural network (GNN) with the ability of ag-
gregating local information, several inductive models based
on GNN have been proposed. GraIL [Teru et al., 2020] mod-
els enclosing subgraph of target triple to capture topological
structure (see Test graph A in Figure 1), which owns induc-
tive ability. On the basis of GraIL, several works [Chen et
al., 2021; Mai et al., 2021] further utilize enclosing subgraph
structure to predict links inductively. However, all above
methods only consider the enclosing part of subgraph with-
out complete neighboring relations, which leads to two chal-
lenging issues. First, they lose partial neighboring relations
due to the nature of enclosing subgraph. But all neighbor-
ing relations contain valuable information to characterize en-
tities (called neighboring relational feature). For example,



in Figure 1, part of relations mother of and born in around
node Messi are excluded from enclosing subgraph (red paths
in Train graph), but they characterize the “human” attribu-
tion of Messi. Second, enclosing subgraph may be empty or
sparse, and all above methods cannot work well in this case,
e.g. no usable connecting path existing between LeBron and
L.A. in Test graph B. In this case, all above methods cannot
work without enclosing subgraph. In fact, we can still rea-
son inductively by some relational paths across target nodes
(called neighboring relational path), e.g. the relational path
(gender, lives in, located in) in Train graph (green paths).

Based on the above observations, we propose a novel
inductive reasoning model, called Neighboring Relational
Path Infomax, SNRI, which can effectively exploit complete
neighboring information in subgraphs and model neighboring
relational paths in a global way by MI maximization. Specifi-
cally, SNRI models complete neighboring relations in two as-
pects: neighboring relational feature for node initializing and
neighboring relational path for sparse subgraph modeling. In
contrast to previous works [Teru et al., 2020], we first ex-
tract enclosing subgraph for each triple but reserve complete
neighboring relations for each entity. These neighboring rela-
tions are then aggregated in an attentive manner to represent
entities feature. After that, we utilize neighboring relations of
target triples again to build neighboring relational paths in a
global way by MI maximization mechanism and apply a joint
strategy for training. In this way, SNRI can effectively in-
corporate complete relational information into enclosing sub-
graph and model neighboring relational paths, thus improving
the performance of inductive link prediction.

Our key contributions are summarized as follows: 1) We
propose a novel inductive reasoning model, SNRI, which ef-
fectively integrates complete neighboring relations into the
enclosing subgraph from two aspects: neighboring relational
feature and neighboring relational path. 2) We innovatively
apply MI maximization to inductive link prediction by maxi-
mizing local and global representation to model subgraph and
neighboring relational paths in a global way. 3) Experiments
conducted on benchmark datasets show that our work out-
performs existing inductive reasoning by a large margin and
demonstrate the effectiveness of characterizing entities and
modeling sparse subgraphs.

2 Related Work
2.1 Link Prediction Methods
Transductive methods. Transductive methods learn an
entity-specific embedding for each node, such as 1)
translation-based TransE [Bordes et al., 2013] and TransH
[Wang et al., 2014]; 2) factorization-based RESCAL [Nickel
et al., 2012], and 3) GNN-based R-GCN [Schlichtkrull et al.,
2018] and CompGCN [Vashishth et al., 2020]. The major
differences among them are the scoring function and whether
utilize structure information. However, all above models have
one thing in common: reasoning over original KGs, and thus
difficult to predict missing links between unseen nodes.
Inductive methods. Inductive models have generalizing
ability for reasoning on unseen nodes. They are cate-
gorized into rule-based and graph-based methods. Rule-

based methods explicitly learn logical rules for reasoning,
which is independent to entities and thus inductive. Some
differentiable methods, NeuralLP [Yang et al., 2017] and
DRUM [Sadeghian et al., 2019], learn logical rules and rule-
confidence simultaneously in an end-to-end differentiable
manner. However, they ignore the structure around the tar-
get triple, leading to a low expressive ability. In recent years,
graph neural network (GNN) has been a powerful tool in link
prediction. Some graph-based methods, such as LAN [Wang
et al., 2019], aggregate neighboring node embeddings to ob-
tain embeddings of unseen nodes, but they have limitation
that unseen nodes have to be surrounded by known neighbor-
ing nodes. For reasoning inductively by structure informa-
tion, GraIL [Teru et al., 2020] is the first method proposed to
model enclosing subgraph structure around the target triple.
Inspired by GraIL, CoMPILE [Mai et al., 2021] proposes a
communicative message passing network to strengthen the
message interactions between edges and entitles, thus enables
a sufficient flow of relation information. However, all these
models based on enclosing subgraph suffer two problems:
1) partial neighboring relations are neglected when extract-
ing the enclosing subgraph, and 2) when enclosing subgraph
is sparse or even empty, they are hard to reason inductively.
In contrast, our work keeps integrated neighboring relations
and builds neighboring relational paths to handle sparse sub-
graphs, which has a better ability for reasoning.

2.2 Contrastive Learning
Contrastive learning is an important approach of self-
supervised learning, which trains an encoder to be con-
trastive between representations that captures statistical de-
pendencies of interest and those that do not [Velickovic et
al., 2019]. Contrastive Learning has shown great superior-
ity in many downstream applications [Devlin et al., 2019;
He et al., 2020]. Recently, many works [Qiu et al., 2020;
Velickovic et al., 2019] apply contrastive Learning for GNN.
DGI [Velickovic et al., 2019] maximizes mutual information
(MI) between local representation and global representation
of graph to capture more common local features from both lo-
cal and global perspectives. However, DGI only applies MI to
unweighted graph with simple relations. Motivated by DGI,
DRGI [Liang et al., 2021] introduces MI to knowledge graphs
to handle multi-relational graphs, but it is still a transductive
model. For catching neighboring relations in a global way, we
innovatively apply MI into the inductive link prediction task
by maximizing MI of subgraph and graph representations.

3 Methods
In this section, we introduce our proposed method SNRI in
detail. The overall task is to score a triple (u, rt, v) in a KG
G = |V,R| inductively, i.e. to predict the likelihood of the
target relation rt between the unseen target nodes u and v,
where V and R are sets of nodes and relations. An overview
of our proposed SNRI is shown in Figure 2. SNRI mainly
consists of four parts: 1) subgraph extraction and neighboring
relational feature module to initialize node features, 2) sub-
graph neural network to learn representations of subgraphs,
3) self-supervised mutual information mechanism to model



loc
ate

d_
in

( , )

Readout

Readout
mother_of lives_in city_of

lives_in city_of
mother_of located_inlives_in

located_in

Subgraph
Extraction

W!
+

α"

α" α"

h"#$

h%&'

h!
e"

e" e"

NRFM: Neighboring Relational
Feature Module

G"

NRFM

G

… …

…

ϕ ϕ

layer l = 1 l = L

…e"( e")

Input Subgraph

mother_of lives_in

so
n_

of

city_of

𝑝1
𝑝2
𝑝3
𝑝4

Neighboring Relational Paths

Neighboring Relational
Paths Extraction

Input
G
R
U

Entity
Embeddings

Relation
Embeddings

Relational Paths
Embeddings

+

Embeddings of G&

Supervised
Learning

Scoring Function

+

GNN

Readout

( , )

Local Subgraph
Embeddings

Global Graph
Embedding

Discriminator

MI Maximization

Relation Embedding

Node Feature

Node Feature Initialization

Self-Supervised
Learning

Positive Pair

Neighboring Relational Paths Module

Negative PairKG

SN
N

SN
N

G

SNN: Subgraph
Neural Network

son_of

son_of lives_in

1

2

3
4

Figure 2: An overview of our proposed SNRI, which consists of the following steps: 1) extract subgraphs with complete neighboring relations,
and initialize the node features by neighboring relational features; 2) feed subgraphs into subgraph neural network to learn representations;
3) maximize MI between subgraph-graph to model neighboring relations in a global way, and 4) train model by a joint strategy.

neighboring relations in a global way, and 4) a joint training
strategy to optimize model.

3.1 Neighboring Relational Feature Module
Subgraph extraction. We first extract enclosing subgraph
G(u, rt, v) around target triple (u, rt, v) following GraIL
[Teru et al., 2020]. There are three steps for subgraph ex-
traction. First, we obtain node sets of k-hop neighborhood,
Nk(u) and Nk(v), of two target nodes u and v respectively.
Then, we obtain the enclosing subgraph by taking intersec-
tion of Nk(u) ∩ Nk(v). In the end, we filter out nodes that
are isolated or at a distance greater than k from either of the
target nodes. But different from GraIL, we reserve complete
neighboring relations N r(u) of each node, which contains
relations partially omitted by enclosing subgraph.

Node initialization. Since inductive reasoning demands
node attributes cannot be used, and GNN requires a node
feature matrix X as input [Gilmer et al., 2017], our work
initialize the node feature h0

i for node i by combining po-
sitional feature hpos

i and neighboring relational feature hrel
i

(see lower left of Figure 1). First, we obtain the positional
feature hpos

i ∈ Rdp by double radius vertex labeling [Zhang
and Chen, 2018] scheme :

hpos
i = [one-hot(d(i, u))⊕ one-hot(d(i, v)])), (1)

where d(i, u) and d(i, v) denote the shortest distance from
node i to target head node u and target tail node v; ⊕ rep-
resents the concatenation operation; Second, we propose the
following message passing for node i in an attentive manner

to capture neighboring relational feature hrel
i ∈ Rd :

hrel
i =

∑
r∈N r(i)

αrer, (2)

αr = softmax(er, ert) =
exp(e>r ert)∑

r′∈N r(i) exp(e>r′ert)
, (3)

where er and ert are relation embeddings of neighboring re-
lation r and target relation rt, and αr reflects the importance
of relation r to node i under target relation rt. In the end, we
represent feature hi ∈ Rd of node i by concatenation of hrel

i
and hpos

i , and project node embeddings to the same embed-
dings space as relations by W0 ∈ R(d+dp)×d :

h0
i = W0[h

rel
i ⊕ hpos

i ]. (4)
We argue that the feature of nodes with complete neighboring
relational semantics are more expressive and robust.

3.2 Subgraph Neural Network
With the initial feature of nodes, we input sampled subgraphs
to subgraph neural network in SNRI (see lower right of Fig-
ure 2). As the main component of SNRI, the subgraph neural
network models subgraph by two steps: 1) obtain represen-
tation of enclosing subgraph by GNN; 2) extract and model
neighboring relational paths across target triple.

Enclosing Subgraph Module
We first input the subgraph G(u, rt, v) of target triple
(u, rt, v) to GNN to learn representation of enclosing sub-
graph. For sufficiently modeling correlations between re-
lations, our GNN model considers the interaction between



nodes and relations. We define our nodes’ updating function
in k-th layer as:

hk
i =

∑
r∈R

∑
j∈Nr(i)

αi,rW
k
rφ(e

k−1
r ,hk−1

j ), (5)

αi,r = σ2 (W2ci,r + b2) , (6)

ci,r = σ1
(
W1

[
hk−1
i ⊕ hk−1

j ⊕ ek−1r ⊕ ek−1rt

]
+ b1

)
,
(7)

where Nr(i) denotes the immediate outgoing neighbors of
node i under relation r; Wk

r is the transformation matrix
for relation r for propagating messages; σ1, σ2 are Sig-
moid function; αi,r is the attention weight of edge (i, r, j);
φ(ek−1r ,hk−1

j ) is a fusion operation to share hidden feature of
nodes and relations. Inspired by [Vashishth et al., 2020], we
set the default fusion operation as subtraction φ(e,h) = e−h
to discriminate direction of relation. In addition, to keep
nodes and relations the same embedding space, relation em-
beddings are also transformed as follows:

ekr = Wk
rele

k−1
r . (8)

Finally, to obtain the representation hG of subgraph G, we
use an average readout function:

hG =
1

|VG |
∑
i∈VG

hL
i , (9)

where VG denotes the set of nodes in subgraph G.

Neighboring Relational Path Module
To solve the issue of sparse subgraph, we propose to explore
neighboring relations to model neighboring relational paths.
This procedure can be seen in Figure 2. Specifically, a neigh-
boring relational path is a relational sequence across the tar-
get nodes, i.e. p = (ru, rt, rv), where ru ∈ N rel(u) and
rv ∈ N rel(v) are relations around target nodes u and v. We
denote P(u,v) as the set of all neighboring relational paths
across u and v in subgraph.

For each neighboring relational path p, we first model it
with Gated Recurrent Network (GRU) [Cho et al., 2014] as
follows:

p = GRU(p) = GRU(eru , ert , erv ). (10)

Then, we aggregate all path representations with attention to
obtain the subgraph path representation pG :

pG =
∑
p∈P

βpp (11)

βp =
exp(p>ert)∑

p′∈P(u,v)
exp(p′>ert)

. (12)

Supervised Learning
To organize above two modules in a unified framework, we
combine the enclosing subgraph information hG and neigh-
boring relational path information pG as the final representa-
tion of subgraph sG :

sG = [hG ⊕ pG ], (13)

and assign score with embeddings of target triple (u, rt, v):

f(u, vt, r) = Ws[h
L
u ⊕ hL

v ⊕ eLrt ⊕ sG ], (14)

where hL
u ,h

L
u , and eLrt denote the embedding of target nodes

u, v and target relation r in L-th layer of GNN respectively.
Finally, for supervised learning, we construct a margin-based
loss function with equal negative triples by replacing heads
or tails:
Lsup =

∑
(u,rt,v)∈G

max(0, f(u′, r′t, v
′)− f(u, rt, v) + γ),

(15)
where(u, rt, v) and (u′, r′t, v

′) refer to positive and negative
samples, and γ is the margin hyperparameter.

3.3 MI Maximization in SNRI
To avoid the subgraph neural network in SNRI over-
emphasizing local structure, we further model neighboring
relations in a global way by maximizing local-global (i.e.
subgraph-graph) mutual information (MI), that is, we seek
to enable neighboring relational features and paths to capture
global information of entire KG.

To obtain global representation sG for G, we use a readout
function to summarize the obtained subgraph representations:

sG =
1

N

N∑
i=1

sGi , (16)

where N is the number of triples in knowledge graph G;
Gi ∈ G is the subgraph of i-th triple. Then, we utilize
the Jensen-Shannon (JS) MI estimator [Sun et al., 2021] to
maximize the estimated MI over subgraph and graph rep-
resentations. Specifically, a discriminator D(sG , sG) is em-
ployed, which assign the probability score to subgraph-graph
pair. Note that D should be higher for subgraphs contained
within the graph. Following DGI [Velickovic et al., 2019], we
heuristically apply a bilinear function as the discriminator:

D(sG , sG) = σ(s>GWMIsG), (17)
where σ is the sigmoid function and WMI is a learnable
scoring matrix. Since self-supervised MI mechanism is con-
trastive, negative graph G(X̃, Ã) is constructed by a corrup-
tion function C :

G̃(X̃,A) ∼ C(G(X,A)), (18)
where X is the initial feature of nodes described in section
3.2, and A is the adjacency matrix of G. The corruption
function C(·) preserves original structure but corrupts nodes
feature by row-wise shuffling of X.

The MI objective for knowledge graph is realized by con-
trasting positive and negative subgraph-graph pairs:

LMI =
1

N +M
(

N∑
i=1

E(X,A) [logD (sGi , sG)]

+

M∑
j=1

E(X̃,A)

[
log
(
1−D

(
s̃Gj , sG

))]
), (19)

whereN,M denote the number of positive and negative sam-
ples; s̃G refers to the representation of negative subgraph sam-
pled from G̃.



WN18RR FB15k-237

v1 v2 v3 v4 v1 v2 v3 v4

Method AP H@10 AP H@10 AP H@10 AP H@10 AP H@10 AP H@10 AP H@10 AP H@10

Neural-LP 86.02 74.37 83.78 68.93 62.90 46.18 82.06 67.13 69.64 52.92 76.55 58.94 73.95 52.90 75.74 55.88
DRUM 86.02 74.37 84.05 68.93 63.20 46.18 82.06 67.13 69.71 52.92 76.44 58.73 74.03 52.90 76.20 55.88
RuleN 90.26 80.85 89.01 78.23 76.46 53.39 85.75 71.59 75.24 49.76 88.70 77.82 91.24 87.69 91.79 85.60
GraIL 94.32 82.45 94.18 78.68 85.80 58.43 92.72 73.41 84.69 64.15 90.57 81.80 91.68 82.83 94.46 89.29
CoMPILE 98.23 83.60 99.56 79.82 93.60 60.69 99.80 75.49 85.50 67.64 91.68 82.98 93.12 84.67 94.90 87.44

SNRI 99.10 87.23 99.92 83.10 94.90 67.31 99.61 83.32 86.69 71.79 91.77 86.50 91.22 89.59 93.37 89.39

Table 1: AUC-PR and Hits@10 results on the inductive benchmark datasets extracted from WN18RR and FB15k-237. We use AP and H@10
to denote AUC-PR and Hits@10, respectively. The best performance is highlighted.

WN18RR FB15k-237

#R #N # T #R #N # T

v1 train 9 2746 6678 183 2000 5226
test 9 922 1991 146 1500 2404

v2 train 10 6954 18968 203 3000 12085
test 10 2923 4863 176 2000 5092

v3 train 11 12078 32150 218 4000 22394
test 11 5084 7470 187 3000 9137

v4 train 9 3861 9842 222 5000 33916
test 9 7208 15157 204 3500 14554

Table 2: Statistics of inductive datasets. We use #R, #N, and #T to
denote the number of relations, nodes, and triples, respectively.

3.4 Joint Training Strategy
The final learning objective of our work is defined as the com-
bination of the supervised loss in Eq. 15 and MI loss in Eq.
19:

L = Lsup + λLMI , (20)

where λ controls the contribution of the self-supervised MI
mechanism. By this joint training strategy, our model is capa-
ble of modeling subgraph with complete relations while cap-
turing neighboring relations aware of both local and global
structural properties.

4 Experiments
4.1 Experimental Configurations
Datasets. WN18RR [Dettmers et al., 2018] and FB15k-237
[Toutanova et al., 2015] are common datasets used in trans-
ductive link prediction. For inductive link prediction task,
we use the variants of WN18RR and FB15k-237 proposed by
GraIL [Teru et al., 2020], where entities in test set are not
contained in train set and each dataset generate four versions
datasets with increasing size. The statistics of the datasets is
shown in Table 2.

Evaluation protocol. To compare fairly with the prior
methods, we use the same evaluation protocol as [Teru et al.,
2020]: AUC-PR for classification metrics and Hits@10 for
ranking metrics. AUC-PR is an indicator for classification
task by computing the area under the precision-recall curve.
To compute AUC-PR, along with all positive triples in test

Figure 3: The performance comparison of SNRI and CoMPILE un-
der different ranges of subgraph density on inductive WN18RR v1
and v4.

set, we score an equal number of negative triples sampled
by corrupting head or tail with a random entity. Hits@10 is
the proportion of correct entities ranked in top 10 of candi-
date entities. For calculating Hits@10, we compare positive
triples with sampled negative triples by assigning scores, to
see whether the true triple can rank top 10. Each result is
obtained by averaging over 5 runs for accurate evaluation.
Hyperparameter settings. For subgraph extraction, we ex-
tract enclosing subgraph with 3 hops. In training process,
we manually specify the hyperparameters as follows: learn-
ing rate to 0.001, dropout rate to 0.5, embedding dimen-
sion to 32. The margin γ in supervised loss function is set
to 10, and coefficient λ in joint loss function is set to 5.
The maximum number of training epochs is set to 30. We
use Adam [Kingma and Ba, 2015] as optimizer to train our
model. All experiments are implemented by PyTorch and run
on NVIDIA RTX TITAN.
Baselines. We compare our model to several state-of-the-
art methods, including Neural-LP [Yang et al., 2015], DRUM
[Sadeghian et al., 2019], GraIL [Teru et al., 2020], and CoM-
PILE [Mai et al., 2021]. Neural-LP and DRUM are rule-
based models learning logical rules and rule-confidence si-
multaneously in an end-to-end differentiable manner. GraIL
and CoMPILE are graph-based models reasoning inductively
by enclosing subgraph.

4.2 Main Results
Comparison with baselines. The results comparing with
baseline models are shown in Table 1. The results show that



WN18RR

Method v1 v4

SNRI w/o NRF 86.96 82.26
SNRI w/o NRP 85.91 82.01
SNRI w/o MI 84.84 82.43

SNRI 87.23 83.32

Table 3: Ablation results of Hits@10 on inductive WN18RR v1 and
v4.

our proposed model SNRI significantly outperforms base-
lines on the majority of datasets in terms of both AUC-PR
and Hits@10 evaluation protocol, which demonstrates the ef-
fectiveness of our proposed model. Specifically, the average
boosts of SNRI on WN18RR and FB15k-237 in Hits@10
reach up to 5.34% and 3.64% respectively compared with
SOTA model CoMPILE, and it can be seen that the perfor-
mance on WN18RR is more significant. This is because all
previous works based on enclosing subgraph are hard to do
reasoning when subgraph is sparse. As presented in Table
2 WN18RR has a lower ratio of #T to #E than FB15k-237,
which means that subgraphs in WN18RR are more likely to
be sparse, and thus scant of structure information for reason-
ing. In contrast, our model can deal with sparse subgraph
powerfully by modeling neighboring relational features and
neighboring relational paths to exploit complete neighboring
relations sufficiently. But for FB15k-237, the improvement is
less significant, which may be because subgraphs in FB15k-
237 have very high density so that it is much easier for base-
lines to handle.

Effective modeling of sparse subgraph. In this section,
we tend to further verify that our proposed SNRI is capable
of modeling complete neighboring relations to handle sparse
subgraphs. We evaluate the ranking performance of CoM-
PILE and our proposed SNRI on subgraphs with different
densities in WN18RR v1 and v4. Concretely, we divide sub-
graphs into three ranges according to the number of nodes
in subgraph and then calculate Hits@10 of each range. As
presented in Figure 3, SNRI performs better on WN18RR v1
and v4 across all ranges, especially for the range with low
subgraph density. This result shows that SNRI possesses a
better inductive ability for sparse subgraphs, and proves the
necessity of capturing complete neighboring relations.

4.3 Ablation Study
In this section, we perform ablation study on WN18RR v1
and v4 to investigate the impact of each component in SNRI,
namely, 1) neighboring relational feature (called SNRI w/o
NRF), 2) neighboring relational paths (called SNRI w/o
NRP), and 3) MI maximization (called SNRI w/o MI), by
removing them respectively. Table 3 shows the results of ab-
lation studies. We can find that all variants of SNRI perform
worse than the original SNRI, which demonstrates the effec-
tiveness of each component.

SNRI w/o NRF. After removing the neighboring relational
feature, the Hits@10 value averagely reduces by 0.7%. The

Target Relations Neighboring relational path weight

related form (related form, related form, also see) 0.51
(related form, related form, related form) 0.31

adjoins (country, adjoins, jurisdiction of office) 0.40
(adjoin, adjoins, jurisdiction of office) 0.11

dated participant (people, dated participant, breakup participant) 0.99
(award nominee, dated participant, dated participant) 0.01

Table 4: Some neighboring relational paths with importance weight
in inductive FB15k-237 dataset.

reason may be that nodes feature with only positional in-
formation are less expressive, which cannot characterize the
node effectively, and when nodes in subgraph are plentiful
the positional feature is unstable and less robust. In contrast,
complete neighboring relations are more effective and robust
to characterize node features.
SNRI w/o NRP. From the result of SNRI w/o NRP, we can
notice that performance drops a lot when neighboring rela-
tional paths are omitted. Associated with the result of section
4.2, this result demonstrates neighboring relational paths are
effective in handling sparse subgraphs. SNRI w/o NRF to-
gether with SNRI w/o NRP demonstrates the effectiveness of
utilizing complete neighboring relations which are omitted by
enclosing subgraph.
SNRI w/o MI. Additionally, removing MI maximization
results in an average reduction of 1.7%. This result implies
global information is helpful to model neighboring relations
better. We can observe that complete neighboring relations
play a greater role in SNRI than MI maximization, but better
performance can be obtained by considering complete neigh-
boring relations and MI maximization simultaneously.

4.4 Case Study
From WN18RR and FB15k-237, We select some target rela-
tions and then display the top 2 important neighboring rela-
tional paths in Table 4. The result shows that SNRI can learn
correct neighboring relational paths and tend to assign a high
score for the path with multiple relational types, indicating
that SNRI prefers more informative neighboring relational
paths to reason inductively. For example, considering target
relation related form, the path (related form, related form,
also see) gets a larger importance weight than (related form,

related form, related form) with single relational type.

5 Conclusion
In this paper, we propose a novel model called SNRI for in-
ductive link prediction on knowledge graph, which can ef-
fectively exploit complete neighboring relations and learn
global structure information. SNRI utilizes complete neigh-
boring relations to characterize neighboring relational fea-
tures of nodes in a more expressive manner, and then models
neighboring relational path in a global way by MI maximiza-
tion. The experiments on two benchmark datasets demon-
strate our proposed SNRI significantly outperforms several
existing state-of-the-art methods for the inductive link predic-
tion task, and verify the effectiveness of modeling complete
neighboring relations in a global way to characterize node
features and reason on sparse subgraphs.
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R. Devon Hjelm. Deep graph infomax. In ICLR, 2019.

[Vrandecic, 2012] Denny Vrandecic. Wikidata: a new plat-
form for collaborative data collection. In WWW, 2012.

[Wang et al., 2014] Zhen Wang, Jianwen Zhang, Jianlin
Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI, 2014.

[Wang et al., 2018] Hongwei Wang, Fuzheng Zhang, Jialin
Wang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo.
Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In CIKM, 2018.

[Wang et al., 2019] Peifeng Wang, Jialong Han, and Chen-
liang Li. Logic attention based neighborhood aggregation
for inductive knowledge graph embedding. In AAAI, 2019.

[Yang et al., 2015] Bishan Yang, Wen-tau Yih, Xiaodong
He, and Li Deng. Embedding entities and relations for
learning and inference in knowledge bases. In ICLR, 2015.

[Yang et al., 2017] Fan Yang, Zhilin Yang, and William W.
Cohen. Differentiable learning of logical rules for knowl-
edge base reasoning. In NeurIPS, 2017.

[Zhang and Chen, 2018] Muhan Zhang and Yixin Chen.
Link prediction based on graph neural networks. In
NeurIPS, 2018.


	Introduction
	Related Work
	Link Prediction Methods
	Contrastive Learning

	Methods
	Neighboring Relational Feature Module
	Subgraph Neural Network
	Enclosing Subgraph Module
	Neighboring Relational Path Module
	Supervised Learning

	MI Maximization in SNRI
	Joint Training Strategy

	Experiments
	Experimental Configurations
	Main Results
	Ablation Study
	Case Study

	Conclusion

