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PoKE: Prior Knowledge Enhanced Emotional Support
Conversation with Latent Variable

Anonymous Author(s)

ABSTRACT
Emotional support conversation (ESC) task can utilize various sup-
port strategies to help people relieve emotional distress and over-
come the problem they face, which has attracted much attention
in these years. The emotional support is a critical communication
skill that should be trained into dialogue systems. Most existing
studies predict the support strategy according to current context to
guide response. However, most state-of-the-art works rely heavily
on external commonsense knowledge to infer the mental state of
the user in every dialogue round. Although effective, they may suf-
fer from significant human effort, knowledge update and domain
change in a long run. Therefore, in this article, we focus on explor-
ing the task itself without using any external knowledge. We find
all existing works ignore two significant characteristics of ESC. (a)
Abundant prior knowledge exists in historical conversations, such
as the responses to similar cases and the general order of support
strategies, which has a great reference value for current conver-
sation. (b) There is a one-to-many mapping relationship between
context and support strategy, i.e.multiple strategies are reasonable
for a single context. It lays a better foundation for the diversity of
generations. Taking into account these two key factors, we propose
Prior Knowledge Enhanced emotional support model with latent
variable, PoKE. The proposed model fully taps the potential of prior
knowledge in terms of exemplars and strategy sequence instead
of external knowledge, and then utilizes a latent variable to model
the one-to-many relationship of strategy. Furthermore, we intro-
duce a memory schema to incorporate the encoded knowledge into
decoder. Experiment results on benchmark dataset show that our
PoKE outperforms existing baselines on both automatic evaluation
and human evaluation. Compared with the model using external
knowledge, PoKE still can make a slight improvement in some met-
rics. Further experiments prove that abundant prior knowledge is
conducive to high-quality emotional support, and a well-learned
latent variable is critical to the diversity of generations.

CCS CONCEPTS
• Computing methodologies→ Discourse, dialogue and prag-
matics; • Information systems→ Sentiment analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’23, , Long Beach, California, United States
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Hello, I feel very stressed

[Question] Hello, what’s going on?

I was looking for some assistance. 
I lost my job 4 month ago

[Self-disclosure] Oh, I‘ve lost my job 
once, but I’ve made it through. How 
have you been handling it?

First few month was kind off alright, but
now I feel very depressed and useless.

[Providing suggestions] Maybe you 
can consider talking to your co-
workers in a similar situation.

(a) Conversation

(b) Multiple valid strategies

context

[Affirmation and Assurance]

[Providing suggestions]

[Question]

Retrieved exemplary responses:

[Providing suggestions] Maybe you 
can find work online doing surveys or 
freelance work. 

[Providing suggestions] I think if you 
talk to your co-workers, they'll have 
ideas for upgrading your workspace.

[Question] Are you eligible for 
unemployment benefits?

…

(c) Prior knowledge in training set

Transition prob. of [Self-disclosure]

[Providing suggestions]

Figure 1: (a) An example to illustrate the ESC task. (b) The
one-to-many mapping relationship that there exist multiple
valid strategies for a single context. (c) Retrieved exemplary
responses give supporter more clues to focus on seeker’s
problem and express strategy more accurately. Meanwhile,
transition probability of strategy provides a good bias to take
a correct strategy. Orange text denotes the strategy taken by
supporter.

KEYWORDS
dialogue system, emotional support conversation, prior knowledge,
latent variable
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1 INTRODUCTION
Emotional support conversation (ESC) [21] is an emerging and chal-
lenging task that devotes to coping effectively with help-seeker’s
emotional distress and helping them overcome the challenges they
face. In general, a well-designed ESC system is crucial for many
applications, e.g. customer service chats, mental health support,
etc. [21]. Compared to the well-researched emotional and empa-
thetic conversation [19, 24, 32], ESC focuses on reducing users’
emotional stress using various emotional support strategies, such as
Question, Providing Suggestions, etc.
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Recently, several works have been proposed to explore the ESC
task. BlenderBot-Joint [21] generates a strategy token as a prompt
to guide the desired response. MISC [37] uses an off-the-shelf gen-
erative commonsense model, called COMET [3], to infer the user’s
mental status, where the COMET can be seen as an external com-
monsense knowledge base. Then, MISC encodes them additionally
and fuses multiple strategies into one response to generate skillfully.
GLHG [27] also utilizes COMET to generate the local intention of
seeker in each dialogue round, but considers the hierarchical rela-
tionship between the seeker’s global situation (summarizing the
condition of the seeker) and the local intention. Although effective,
the commonsense knowledge in COMET need to be carefully in-
tegrated into these models to realize their best potential, and the
external knowledge base requires a great deal of effort to develop.
Further, their model may not be applicable when knowledge base is
updated or application domain is changed. Therefore, in this article,
we emphasize on exploring the existing knowledge in the dataset
and the characteristics of ESC task under the setting of no external
knowledge.

Due to the characteristics of ESC, all existing works still suffer
two key issues. First, all of them are limited to the scope of the
current conversation, but ignore the abundant prior knowledge in
global historical conversations. Moreover, they fail to model the
one-to-many mapping relationship of strategy, i.e. not only one
but multiple strategies could be valid for a single context. These
issues lead to the challenge of generating high-quality and diverse
responses. We next explain these two issues separately.

Generally, when we attempt to solve help-seeker’s problems, we
are adept in drawing on related prior knowledge as reference, e.g.
psychologists would consult many prior classical cases relevant
to current case [25]. In ESC, instead of external knowledge, there
also exists much prior knowledge to rely on, such as the (1) exem-
plary responses to similar cases and (2) the general order of support
strategies. This prior knowledge has a great reference value to help
explore seeker’s problem and decide the target support strategy.
An explanatory example in Figure 1 illustrates how prior knowl-
edge guides and benefits emotional support conversation. (1) The
retrieved context-related responses from historical conversations,
called exemplars, can serve as prior knowledge of response. On
the one hand, some exemplars, e.g. “I think if you talk to ...”, guide
supporter to give more emphasis on the key problem “losing job”,
and thus benefit supporter to focus on and explore seeker’s problem.
On the other hand, some exemplars, e.g. “Maybe you can find ...”,
provide a hint to accurately express the target strategy Providing
suggestions in the sentence pattern starting with “Maybe you”. (2) In
addition to prior knowledge of response, the transition probability
of strategy calculated in training set can act as prior knowledge
to help decide the current strategy. This is because the support
strategies in ESC follow the procedure of three stages (Exploration,
Comforting and Action) [11]. Figure 1(c) shows a transition prob-
ability of strategy Self-disclosure. It illustrates that after sharing
the similar difficulties they faced, supporters tend to use Providing
suggestions to give advice based on their experience.

Additionally, it is well known that dialogue systems have a one-
to-many problem of generation, i.e. given a single context there
exists multiple valid responses [44]. In ESC, the supporter is re-
quired to take reasonable strategies, so there is also a one-to-many

problem of support strategy. As shown in Figure 1 (b), after the
seeker states his problem, the supporter can also employ other
valid strategies except for the frequently used strategy Providing
suggestions. Taking the strategy Question to take a deeper look at
user’s problem or Affirmation and Reassurance to comfort the user
is also a decent choice. Moreover, adopting various strategies is
beneficial to diverse responses. In a nutshell, incorporating prior
knowledge and modeling the one-to-many mapping relationship
of strategy are critical to provide emotional support in ESC task.

To take into account these two significant characteristics of ESC,
we propose a novel model called Prior Knowledge Enhanced emo-
tional support conversation with latent variable model (PoKE).
The proposed model could not only fully tap the potential of prior
knowledge in terms of exemplars and strategy sequence, but also
model the one-to-many mapping relationship of strategy. First, we
construct prior knowledge of exemplars and strategy sequence be-
fore training. Then we use a fine-tuned dense passage retrieval
(DPR) [12] to retrieve a set of responses semantically related to
the input context, and build a first-order Markov transition matrix
of strategy sequence from training set. To model the one-to-many
mapping relationship of strategy, we introduce conditional varia-
tional autoencoder (CVAE) [35] to predict diverse probability distri-
bution of strategy conditioned on current conversation and prior
knowledge of strategy sequence. Furthermore, we assign exemplars
with different attentions according to the distribution of strategy
to emphasize those more relevant exemplars. Lastly, we apply the
technique of memory schema to effectively incorporate encoded
prior knowledge and latent variable into decoder for generation.

The key contributions are summarized as follows: (1) We
explore the emotional support conversation task under the setting
of no external knowledge base and propose a novel model, PoKE.
PoKE can promote emotional support conversation by effectively
modeling the prior knowledge in terms of exemplars and strategy
sequence, and the one-to-many mapping relationship of strategy.
(2) We utilize strategy distribution to denoise the exemplars and
apply a memory schema to effectively incorporate encoded infor-
mation into decoder. (3) Experiments on benchmark dataset (i.e.,
ESConv) of ESC task demonstrate that our method is superior to
existing baselines on both automatic evaluation and human evalua-
tion. Compared with the model using external knowledge, PoKE
still can make a slight improvement in some metrics. (4) Impor-
tantly, we reveal that abundant prior knowledge is conducive to
high-quality emotional support, and a well-learned latent variable
is critical to the diversity of generations.

2 RELATEDWORK
In this section, we first detail some existing proposed methods
for the emotional support conversation. Then, because we utilize
retrieved exemplars to guide generation and take a latent variable to
solve the one-to-many issue of strategy, we will elaborate retrieve-
based generation and one-to-many issue in dialogue system.

2.1 Emotional Support Conversation
Before the task ESC is proposed, there are two relevant well re-
searched dialogue systems, i.e. emotional chatting [36, 40, 45] and
empathetic responding [19, 20, 24, 30]. Emotional chatting needs

2
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to respond in appropriate emotion or the given emotion, such as
happy or angry [45]. Empathetic responding needs to understand
and feel what user is experiencing, and respond with empathy [30].
Compared with them, the emerging task of ESC aims at reducing
help-seeker’s emotional stress and help them explore and overcome
the problem the face. The first work on ESC task, called BlenderBot-
Joint, adopts a chitchat bot BlenderBot [31] as backbone and takes
emotional support into account in conversation [21]. Specifically,
they encode the context history and predict a strategy token. Then,
they concatenate the predicted strategy token to the head of gener-
ation to guide the desired response. Meanwhile, they construct an
Emotional Support Conversation dataset (ESConv) annotated with
support strategies for the ESC task. Based on ESConv, MISC [37]
uses an off-the-shelf commonsense model COMET [3] to infer an
instant mental state of seeker and encodes them additionally. When
predicting strategy, they take the probability of each predicted strat-
egy as weight to get a weighted average representation of strategy,
and utilize it for guiding a skillful generation. GLHG [27] considers
the hierarchical relationship between the seeker’s global situation
(summarizing the condition of the seeker) and the local intention
(inferred by COMET in each dialogue round) in conversation, and
uses a graph neural network to encode their relationship for guid-
ing generation. Note that both MISC and GLHG are constrained by
the external knowledge in COMET, which may not be applicable to
some specific domain. The external knowledge base like COMET
also requires significant human effort to develop. Meanwhile, all of
them are limited to the scope of current conversation but ignore
abundant prior knowledge existing in the dataset. In contrast, we
focus on exploring the existing knowledge and the characteristics
of the ESC task without using any external knowledge.

2.2 Retrieve-based Generation
There are lots of works for retrieve-based generation. We will de-
tail some classical studies since our main aim is not to compare
with them. Some generative models, like GPT2 [28], perform well
on many tasks such as machine translation and question answer
[9, 14, 42]. However, recent some works have pointed out that in
dialogue system, the generation model just relied on the input con-
text suffers from some issues, such as dull generation (e.g. “I don’t
know") and hallucination [6, 16, 33]. To prompt model to generate
more engaging response, RetNRef [41] proposes a simple but ef-
fective retrieve-and-refine strategy. RetNRef appends the retrieved
context-relevant responses to context to guide the generation. Simi-
lar to this approach, Cai et al. [5] retrieves both literally-similar and
topic-related exemplars to guide dialogue generation. Majumder et
al. [23] employs dense passage retrieval and introduce three com-
munication mechanisms of empathy to facilitate the generation
towards empathy. For the ESC task, the abundant prior knowledge
in historical conversations has great reference value for reducing
seeker’s emotional stress. Besides, the responses with the same
strategy are similar in sentence pattern. Thus, we introduce exem-
plars into generation model and denoise exemplars according to the
strategy distribution to emphasize those more relevant exemplars.

2.3 One-to-Many Problem
It is well known that dialogue systems have a one-to-many map-
ping problem that given a single context, there exist multiple valid
responses [6]. To model this one-to-many feature and improve
the diversity of generations, many works introduce latent variable
to model a probability distribution over the potential responses
[7, 8, 43, 44]. DialogVED [6] combines continuous latent variable
into the encoder-decoder pre-training framework to generate more
relevant and diverse responses. Except for continuous represen-
tation of latent variables, some works utilize discrete categorical
variables to promote the interpretability of generation [1, 2]. For
ESC, there also exist several reasonable support strategies and the
corresponding responses at a certain stage. Therefore, it is required
to additionally consider the one-to-many mapping relationship of
strategies. In our work, we introduce a continuous latent variable to
model the distribution over strategy. Furthermore, we employ this
strategy distribution to denoise the exemplars at the sequence-level
to focus on strategy-relevant exemplars.

3 POKE
ProblemDefinition. The dialogue context in ESC is an alternating
set of utterances from seeker and supporter. Given a sequence of
𝑁 context utterances 𝑐 = (𝑢1, 𝑢2, · · · , 𝑢𝑁 ), where each utterance
consists of some words, 𝑢𝑖 = (𝑤𝑖1,𝑤

𝑖
2, · · · ,𝑤

𝑖
𝑀
). In the setting of

ESC, each utterance of supporter is labeled with a support strat-
egy. There are total 8 support strategies, i.e. Question, Reflection
of feelings, Information, Restatement or Paraphrasing, Others, Self-
disclosure, Affirmation and Reassurance, and Providing Suggestions
(for more detail please refer to original paper [21]). We use𝑚 to
denote the total number of strategies in the following parts. Except
for the strategy, there is a brief situation 𝑠 ahead of conversation
summarizing the condition of seeker. In this paper, we denote the
previous one support strategy taken by supporter as 𝑦′, and the
last utterance of seeker (called post) as 𝑝 . Then, our model aims at
using multiple input information and prior knowledge to generate
an emotional support response 𝑟 by reasonable support strategies.
PoKE Overview. Our devised model uses BlenderBot-small [31]
as the backbone. The overview of our method is shown in Figure 2,
which consists of four main parts: (a) prior knowledge module to
retrieve context-related exemplary responses and build a Markov
transition matrix of strategy sequence from training set, (b) unified
encoder to encode multiple input source and exemplars by adding
source tokens, (c) latent variable module to model the proba-
bility distribution of strategy and denoise the exemplars and (d)
knowledge-memory decoder to effectively incorporate encoded
prior knowledge and latent variable into decoder for generation.

3.1 Prior Knowledge Module
Humans tend to use prior knowledge to bias decisions [10], and
there is abundant prior knowledge in historical conversation for
ESC task. Due to the characteristics of ESC, we consider the prior
knowledge of context-related exemplars and the general selection
order of support strategies in our work.
Exemplary Responses. We use Dense Passage Retrieval (DPR)
[12] as our retriever, which is a dense embedding retrieval model
pre-trained on Wikipedia dump. For a target dialogue context with

3
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Figure 2: The model architecture of PoKE, which consists of four parts: (1) Prior Knowledge Module to retrieve context-related
exemplary and construct a Markov transition matrix of strategy, (2) Unified Encoder to encode multiple input sources and
exemplars, (3) Latent Variable Module to sample latent variable for modeling the distribution of strategy and denoising the
exemplars (using a Look up & Weighted sum module) and (4) Knowledge-Memory Decoder to incorporate encoded prior
knowledge and latent variable into the decoder.

the situation, DPR retrieves a set of possible supporter’s responses
from training set as exemplars. These exemplars have analogous
context and situation to the current conversation.

Given the target context 𝑐𝑞 with situation 𝑠𝑞 , we concatenate
them as the query input 𝑞 = [𝑐𝑞, 𝑠𝑞]. For each candidate response
𝑟𝑝 , we get its situation 𝑠𝑝 and do the same concatenation operation
to get the candidate input 𝑝 = [𝑟𝑝 , 𝑠𝑝 ]. Then, DPR calculates the
similarity between the query and candidate input using the dot
product of their embeddings:

sim(𝑞, 𝑝) = 𝐸𝑄 (𝑞)𝑇 𝐸𝑃 (𝑝), (1)

where 𝐸𝑄 (·) and 𝐸𝑃 (·) are the encoders of query and candidate
input respectively. In the end, we select top 𝑘 candidate responses
with the highest similarity as exemplar set E = {𝑒1, 𝑒2, · · · , 𝑒𝑘 },
where 𝑒𝑖 denote an exemplar response. Meanwhile, we can get the
corresponding strategy set Y = {𝑦1, 𝑦2, · · · , 𝑦𝑘 }, where 𝑦𝑖 denotes
the strategy label of 𝑒𝑖 . As for inference, we use the candidate en-
coder 𝐸𝑃 (·) to pre-compute embeddings of all responses in training
set, thus to save the retrieval time of inference. To adapt DPR to
the ESC task, we fine-tune DPR on the dataset of ESC.
First-Order Markov Model of Strategy Transition Before mak-
ing a response, supporter need to think about reasonable strategies
at different conversation stage. As pointed in [21], supporters gen-
erally follow the procedure of three stages (Exploration, Comforting
and Action) [11] to determine the current strategy. Thus, the gen-
eral strategy order calculated in the training set can serve as prior
knowledge to help decide the current strategy. In our work, to urge
the model to focus on the previous strategy that has been cho-
sen, we make a simple but effective assumption that the strategy
sequence follows Markov chain. Then we calculate a first-order
Markov transition matrix T ∈ R(𝑚+1)×𝑚 of strategy from training

set, which also considers the case of no previous strategy. Experi-
ment in Section 4.7 demonstrates this is a simple but practical prior
knowledge of strategy transition. The calculated strategy transition
matrix is shown in Appendix C.1, which is used in Section 3.3 to
help model strategy distribution.

3.2 Unified Encoder
We use a multi-layer Transformer-based encoder of BlenderBot
[31] to encode multiple information source, including dialogue
context, seeker’s post, situation and the retrieved exemplars. Note
that there are multiple source sequences to consider, so building a
parameter-isolating encoder for each source will increase param-
eters and make training time-consuming. To solve this issue, we
design a unified encoder, which is parameter-sharing but prepends
a unique source token to each input. Source token can act as prompt
to distinguish different input. There are four Source tokens includ-
ing [CTX], [POST], [ST] and [EXEM] representing context, post,
situation and exemplar, respectively.

Firstly, we reconstruct the dialogue context by concatenating
them with a special token [𝑆𝐸𝑃] and prepending the source token
[𝐶𝑇𝑋 ], i.e. 𝑐 = [[𝐶𝑇𝑋 ],𝑤1

1 ,𝑤
1
2 , · · · , [𝑆𝐸𝑃],𝑤

2
1 ,𝑤

2
2 , · · · ,𝑤

𝑁
𝑀
]. Then,

we feed this sequence into the encoder to get its contextualized
hidden states:

H𝑐 = Enc(𝑐), (2)
where Enc(·) denotes the encoder, and H𝑐 ∈ R𝑙×𝑑ℎ is the hidden
states of context sequence with 𝑙 tokens and hidden size of 𝑑ℎ . To
obtain a single sentence-level representation of context, we take
the first one hidden state of sequence, i.e. the output hidden state
of source token, as the context representation:

h𝑐 = H𝑐0 . (3)
4
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Similarly, for the given situation 𝑠 , seeker’s post 𝑝 , and each
exemplar sequence 𝑒𝑖 in exemplars set E = {𝑒𝑖 }𝑘𝑖=1, we prepend
them with the corresponding source token in the same way, and use
the encoder to obtain their sequence representations:

H𝑠 = Enc(𝑠), h𝑠 = H𝑠0;

H𝑝 = Enc(𝑝), h𝑝 = H𝑝0 ;

H𝑒𝑖 = Enc(𝑒𝑖 ), h𝑒𝑖 = H𝑒𝑖0 , (4)

and we use HE = [h𝑒1 , ..., h𝑒𝑘 ] to express the representation of the
entire exemplars set E. These representations of multiple source
are used to model the latent variable in Section 3.3 and fed into the
decoder for generation in Section 3.4.

3.3 Latent Variable Module
In this section, we introduce the workflow of modeling latent vari-
able and how to build strategy distribution to obtain representations
of mixed strategy and denoised exemplars.
Latent Variable. To address the one-to-many mapping issues of
responses and support strategy at the same time, we utilize the
Conditional Variational Autoencoder (CVAE) [35] to model the
latent variable. The basic idea of CVAE is to encode the response 𝑟
along with input conditions to a probability distribution instead of a
point. Then, CVAE employs a decoder to reconstruct the response 𝑟
by using latent variable 𝑧 sampled from the distribution. We jointly
use dialogue context 𝑐 , situation 𝑠 , and seeker’s post 𝑝 as the input
conditions for estimating the latent variable z ∈ R𝑑𝑧 . For brevity,
we use a symbol 𝑥 = {𝑐, 𝑠, 𝑝} to denote the input conditions.

CVAE is trained bymaximizing a variational lower boundL𝐸𝐿𝐵𝑂 ,
consisting of two terms: negative likelihood loss of decoder and
K-L regularization:

L𝐸𝐿𝐵𝑂 = L𝑛𝑙𝑙 + L𝑘𝑙 (5)
= E𝑞𝜙 (z |𝑥,𝑟 ) [log𝑝𝜃 (𝑟 |z, 𝑥)]
− 𝐾𝐿(𝑞𝜙 (z|𝑟, 𝑥)∥𝑝𝜃 (z|𝑥))

where 𝑞𝜙 (z|𝑟, 𝑥) and 𝑝𝜃 (z|𝑥) are called recognition network and
prior network respectively (with parameters𝜙 and 𝜃 ), and 𝑝𝜃 (𝑟 |z, 𝑥)
is the decoder for generation, which will be illustrated in Section
3.4. Then we can sample latent variable z from the well-learned
Gaussian distribution (for more detail please see Appendix D).

In order to regularize the latent space andmodel the one-to-many
mapping relationship of strategy, we design an extra optimizing
objective of strategy, L𝑦 . A strategy prediction network 𝑝𝜃 (𝑦 |z) is
used to recover the strategy label 𝑦 by latent variable z:

L𝑦 = E𝑞𝜙 (z |𝑥,𝑟 ) [𝑝𝜃 (𝑦 |z)], (6)
𝑝𝜃 (𝑦 |z) = p𝑦, (7)

where p is denoted as the distribution of strategy. We calculate p
by a fully connected layer and based on the transition matrix T
obtained in Section 3.1:

p = softmax(W𝑦z + b𝑦 + T𝑦′), (8)

where W𝑦 ∈ R𝑚×𝑑𝑧 and b𝑦 ∈ R𝑚 are the learnable parameters, 𝑦′
is the previous strategy taken by the supporter, which is provided
in dataset, and T𝑦′ ∈ R𝑚 is the transition probability of 𝑦′.

Representation of Mixed Strategy. To model the complexity of
strategy expressed in one utterance, and consider multiple valid
support strategies, we adopt a method of mixed strategy represen-
tation inspired by [19, 37]. First, we create a strategy codebook
S ∈ R𝑚×𝑑ℎ storing the representation of each strategy. Then, we
utilize the strategy distribution p to get a weighted combination of
S, which blends multiple strategy in one representation s ∈ R𝑑ℎ :

s = p · S. (9)

Representation of Denoised Exemplars. In general, the re-
trieved exemplars contain irrelevant support strategies. To denoise
the exemplars in terms of strategy, we first look up the strategy
probability from strategy distribution as the weight for each ex-
emplar. Then, we combine all exemplar representations HE at se-
quence level to obtain a single representation e ∈ R𝑑ℎ of denoised
exemplars:

e =
𝑘∑︁
𝑖=1

p𝑦𝑖∑𝑘
𝑗=1 p𝑦 𝑗

· HE
𝑖 (10)

=

𝑘∑︁
𝑖=1

p𝑦𝑖∑𝑘
𝑗=1 p𝑦 𝑗

· h𝑒𝑖 ,

where 𝑦𝑖 ∈ [0,𝑚) is the strategy label of exemplar 𝑒𝑖 , p𝑦𝑖 denotes
the probability of 𝑦𝑖 , and the denominator is normalization.

The representations of the latent variable, mixed strategy, and
denoised exemplars will be incorporated into the decoder to guide
generation, which is illustrated in the following section.

𝐦

… … … …

…

…

…

Decoder Layer 𝑙

𝐇!! 𝐇"! 𝐇#!

Figure 3: Illustration of memory schema applied in self-
attention module in decoder: H𝑙𝑡 attends both H𝑙<𝑡 and mem-
ory vectors m at each layer.

3.4 Knowledge-Memory Decoder
After getting the above-mentioned representations of the latent
variable z, mixed strategy s, and denoised exemplars e, the conse-
quent problem is how to effectively incorporate them into decoder1
for generation. Inspired by [6, 15], we apply a memory schema to
inject these encoded knowledge. The memory schema regards the
representations of the encoded knowledge as additional memory
vectors m for each self-attention layer to attend, as illustrated in
Figure 3. We first project the vector of latent variable z into the
𝑑ℎ-dimensional space:

zℎ = W𝑧z, (11)
where W𝑧 ∈ R𝑑ℎ×𝑑𝑧 is the projection matrix. Thus, we can obtain
the memory vectors m = [zℎ, s, e] ∈ R3×𝑑ℎ by stacking zℎ, s, e.
Then, we modify the computation of key vector 𝐾 and value vector
1We apply the decoder in BlenderBot [31] to model the distribution 𝑝𝜃 (𝑟 |z, 𝑥) and
optimize the negative likelihood loss L𝑛𝑙𝑙 in Eq. (5).
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𝑉 in each self-attention layer by incorporating the memory vectors.
Concretely, memory vectors m are prepended to the hidden states
H𝑙 , denoted as [m,H𝑙 ], to calculate the key vector 𝐾 and value
vector 𝑉 in each self-attention layer:

𝐾 = [m,H𝑙 ]W𝐾

𝑉 = [m,H𝑙 ]W𝑉 (12)

whereW𝐾 ,W𝑉 ∈ R𝑑ℎ×𝑑ℎ are parameter matrices of key and value,
respectively. The memory schema is equivalent to adding some
virtual tokens to the response sequence at each layer and enables
the decoder to attend all knowledge directly. Besides, we perform
multi-head attention over the encoded context H𝑐 and post H𝑝
for each layer’s cross attention inspired by [37]. In this way, the
knowledge is injected into the decoder to guide the generation at
each step.

3.5 Training Objective
The final learning objective is defined as the combination of CVAE
loss in Eq. (5) and strategy prediction loss in Eq. (6)

L(𝜑) = L𝐸𝐿𝐵𝑂 + 𝜆L𝑦, (13)

where 𝜑 denotes the parameters of PoKE, and 𝜆 controls the degree
of regularizing latent space by strategy. However, directly train-
ing this objective may suffer two optimizing challenges, i.e. KL-
vanishing and strategy-unstablity. To alleviate them, we adopt two
annealing methods including KL-annealing and Strategy-annealing.
KL-vanishing. This problem lies in that the decoder overly attends
the encoded information of context, and thus ignore the latent
variable z, leading to the failure of encoding informative z [4]. We
adopt a KL annealing [44] method to solve this issue, i.e. gradually
increasing the weight of KL loss in Eq. (5) from 0 to 1 during train.
Strategy-unstablity. At the early stage of training, using latent
variable tends to predict unstable and incorrect strategy distribution.
Then, this error is propagated to the representation of denoised
exemplars and the decoder [19]. To stabilize the training stage,
we take a measure of strategy-annealing. That is, we use the true
distribution of target strategy instead of the predicted distribution
by a certain probability 𝛼𝑡 and anneal it over time:

𝛼𝑡 = 𝛽 + (1 − 𝛽)𝑒−
𝑡
𝑇 (14)

where 𝛽 is annealing rate, 𝑡 is the current iteration step, and 𝑇 is
the annealing steps.

4 EXPERIMENTS
4.1 Dataset
We use the emotional support conversation dataset ESConv [21] to
evaluate our method. ESConv contains a total of 1,053 dialogues and
31,410 utterances. Each conversation contains a seeker’s situation
and a dialog context, and each utterance of supporter is annotated
by a support strategy that is taken by the supporter. There are 8
different support strategies roughly uniformly distributed across
the dataset. Due to the long turns in ESC, we cut each conversa-
tion into several pieces with 10 utterances and the last utterance is
supporter’s response. For training and validation, we split the ES-
Conv into the sets of training/validation/test with the proportions

of 7:1.5:1.5. The statistics of original ESConv is shown in Table 8
and the split ESConv is shown in Table 2.

4.2 Evaluation Protocol
Following existing methods, we adopt automatic and human evalu-
ation to evaluate our model and compare with strong baselines.
Automatic Evaluation.We employ perplexity (PPL), BLEU-1 (B-1),
BLEU-2 (B-2), BLEU-3 (B-3), BLEU-4 (B-4) [26], ROUGE-L (R-L) [18],
Distinct-1 (D-1), Distinct-2 (D-2) [17] automatic metrics to evaluate
model performance. PPL is defined as 𝑒 raised to the power of cross-
entropy and is kept as a reference. B-1/2/3/4 and ROUGE-L measure
the number of matching n-grams between the model-generated
response and the human-produced reference, which reflect the
quality generation. D-1/2 is calculated by the number of distinct
1/2-grams divided by the total number of generated words, which
indicates the generation diversity.
Human Evaluation. We randomly sample 64 dialogues from the
test set and generate responses using our model and one baseline.
Then, 3 annotators with relevant backgrounds are prompted to
choose the better response based on indicators in [21]: (1) Fluency:
which one are more fluent? (2) Identification: which one is more
helpful in identifying the seeker’s problems? (3) Comforting: which
one is more skillful in comforting the seeker? (4) Suggestion: which
one providesmore helpful suggestions? (5) Overall: generally, which
emotional support do you prefer?

4.3 Compared Methods
Since our main purpose is to explore the ESC task under the setting
of no external knowledge, we place emphasis on those baselines
that do not require any external knowledge. We compare our model
with the following baselines, also including a model using external
knowledge:

(1) Transformer [38]. We use a standard Transformer model,
which is trained from scratch by a negative likelihood ob-
jective.

(2) Multi-TRS [29]. Multi-TRS is a multitask Transformer
trained with an additional learning objective of predict-
ing the target emotion.

(3) MoEL [19]. MoEL models the distribution of emotion and
assigns it to multiple Transformer decoders to softly com-
bine their output.

(4) BlenderBot-Joint [21]. BlenderBot-Joint is built on a pre-
trained dialoguemodel, BlenderBot [31]. It generates a strat-
egy token and attaches it to the head of response to guide
the desired response.

(5) MISC [37]. MISC is also built on BlenderBot but requires
external knowledge. It injects external knowledge by infer-
ring the user’s fine-grained emotional status using COMET
[3]. When generating, they first predict a probability distri-
bution of strategy and use it to obtain a weighted average
representation of strategy for guiding generation.

Note that Multi-TRS and MoEL require the emotion label of
seeker for training, so we use the conversation-level emotion label
provided in ESConv dataset to train them. For a fair comparison,
we apply the same hyperparameters for all baselines. The detail of
implementation is illustrated in Appendix B
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Table 1: Result of automatic evaluation on baseline models and PoKE. ∗ denotes the model requiring external knowledge. The
best performance under the setting of no external knowledge is highlighted in bold. Considering the model using external
knowledge, the best score is underlined. ↓ indicates that the lower the value, the better the performance.

Model PPL ↓ B-1 ↑ B-2 ↑ B-3 ↑ B-4 ↑ R-L ↑ D-1 ↑ D-2 ↑
w/o external knowledge
Transformer 53.85 15.07 4.67 1.78 0.84 13.26 1.49 12.97
MultiTRS 53.08 15.06 4.67 1.74 0.77 13.45 1.56 13.65
MoEL 53.61 17.98 5.96 2.27 1.02 14.08 1.12 11.25
BlenderBot-Joint 15.71 16.99 6.18 2.95 1.66 15.13 3.27 20.87

with external knowledge
MISC∗ 16.62 17.71 6.44 3.00 1.62 15.57 3.65 22.25

PoKE 15.84 18.41 6.79 3.24 1.78 15.84 3.73 22.03

Table 2: Statistics of processed split ESConv.

Category Train Valid Test

# Dialogues 12,235 2,616 2,794
Avg. length of turns 8.57 8.58 8.65
Avg. length of utterances 18.34 18.31 17.04
Avg. length of contexts 157.35 157.18 147.52

4.4 Experiment Results
Automatic Evaluation. The automatic evaluation results com-
pared with baseline models are shown in Table 1. The results show
that PoKE significantly outperforms baselines on the majority of
metrics. This indicates PoKE can generate high-quality and more
diverse responses, which proves the superiority of PoKE.

Specifically, the Transformer-based models, i.e. Transformer,
Multi-TRS, and MoEL, do not perform well on ESConv. This is
because these models are initialized with random parameters and
trained on ESConv from scratch. Besides, their training objectives
are irrelevant to the support strategy and the characteristics of
emotional support, so they are hard to handle the challenging ESC
task. As for the BlenderBot-based model, i.e. BlenderBot-Joint and
MISC, they gain an improvement by a large margin compared to
the previous baselines. It is due to the pre-trained dialogue model
BlenderBot, which is trained on a large conversation dataset con-
taining multiple conversation skills [34]. For MISC, its D-1 and D-2
are comparatively higher, indicating that it tends to generate more
diverse responses. This is because MISC incorporates varied infor-
mation about seeker’s mental state from external knowledge in
COMET and merges mixed strategies into one response. However,
due to the issue of the local scope of conversation and the one-to-
many relationship of strategy, there is still room for improvement.

Compared to those baselines without external knowledge, our
proposed model PoKE improves significantly on the majority of
metrics. This demonstrates that by effectively exploiting global prior
knowledge from historical conversations, PoKE can get more clues
to focus on seeker’s problem and generate more relevant responses.
For the MISC that uses additional external knowledge, PoKE still
can obtain a slight improvement in some metrics except diversity.
However, PoKE almost achieves the same diversity performance

Table 3: Human evaluation results.

Comparisons Indicators Win Lose Tie
Flu. 61.0 8.2 29.2
Ide. 64.6 13.3 20.5

PoKE vs. MoEL Com. 68.7 15.3 14.3
Sug. 65.6 14.8 17.9
Ove. 70.2 14.8 13.3
Flu. 30.2 23.4 46.3
Ide. 37.5 29.6 32.8

PoKE vs. MISC∗ Com. 43.2 33.3 22.9
Sug. 36.4 30.2 33.3
Ove. 45.8 34.8 19.2

with MISC. This benefits from using latent variable to model the
one-to-many mapping relationship between context and support
strategy, and latent variable makes it easier to sample infrequent
strategies. Moreover, the technique of mixed strategy facilitates
expressing diverse strategies in one response. As for PPL, both
MISC and PoKE perform worse than BlenderBot-Joint. A recent
work proves that PPL is not so reliable for evaluating text quality
[39], and due to the insignificant difference of PPL (PoKE only drops
by 0.13), we do not further refine the model.
Human Evaluation. The best Transformer-based model MoEL
and BlenderBot-based model MISC are used to do a further human
evaluation, which is shown in Table 3. The result displays that our
proposed PoKE is superior to MoEL and MISC on all indicators,
which is nearly consistent with the automatic evaluation results.
Significantly, our PoKE outperforms MoEL by a large margin. This
is partly due to the pre-trained backbone model Blenderbot, which
contains abundant knowledge about communication skills. Com-
pared with MISC, our PoKE that does not rely on external knowl-
edge also achieves a decent performance, especially on aspects of
Comforting and Identification. This indicates that the retrieved
context-related exemplars contains a lot of information relevant
to seeker’s problem, which gives model more clues to identify the
current problem and comfort seeker.

Overall speaking, under the setting of no external knowledge,
our proposed PoKE is superior to baselines on both automatic
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Table 4: Analysis of denoised exemplars

Model PPL ↓ B-2 ↑ B-4 ↑ R-L ↑ D-1 ↑ D-2 ↑
PoKE 15.84 6.79 1.78 15.84 3.73 22.03
w/o denoising 15.81 6.76 1.69 15.60 3.58 21.23

Table 5: The results of PoKE with different CVAE structure.

Model PPL ↓ B-2 ↑ B-4 ↑ R-L ↑ D-1 ↑ D-2 ↑
Normal CVAE 15.84 6.79 1.78 15.84 3.73 22.03
Variant CVAE 16.07 6.76 1.78 15.61 3.28 20.58
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Figure 4: Analysis of the number of exemplars 𝑘

evaluation and human evaluation, which proves the superiority
and effectiveness of PoKE. Besides, abundant prior knowledge and
latent variable help provide better and diverse emotional support
in dialogue system.

4.5 Effect of Exemplars
In this section, we explore the effect of exemplars in terms of de-
noising and quantity. To verify the denoised exemplars in Eq. (10),
we implement another variant of PoKE without denoising exem-
plars, i.e. the representation of exemplars is calculated by averaging,
i.e. e = 1

𝑘

∑𝑘
𝑖=1 h

𝑒𝑖 . The result is displayed in Table 4. All metrics
drop when not denoising the exemplars. This demonstrates that the
strategies of some retrieved exemplars are irrelevant to the current
context, and need to be used selectively.

Figure 4 shows that as the number of exemplars increases, the
overall performance tends to improve first and then decrease. This
is because when exemplars are insufficient, PoKE lacks adequate
reference information. When exemplars are too many, there is a
lot of redundant and noisy information to distract the generation.
Although PoKE (𝑘 = 15) can utilize plentiful information to improve
quality (higher B-2 and R-L), it pays the price of decreased fluency
and diversity (very low PPL and D-1/2). In the end, we decide to
retrieve 10 exemplars for each sample considering both the overall
effect and training efficiency.

(a) Normal CVAE (b) Variant CVAE

Figure 5: t-SNE visualization of the posterior z for test re-
sponses with 8 strategies. (a) Normal CVAE: strategy only
acts as output to regularize the latent space. (b) Variant CVAE:
strategy is only as input condition of latent variable.

Table 6: The results of ablation study on PoKE variants.

Model PPL ↓ B-2 ↑ B-4 ↑ R-L ↑ D-1 ↑ D-2 ↑
PoKE w/o e 15.74 6.59 1.63 15.54 3.53 21.45
PoKE w/o T 15.84 6.66 1.70 15.80 3.67 21.65
PoKE w/o z 16.13 6.57 1.64 15.42 3.36 20.59

PoKE 15.84 6.79 1.78 15.84 3.73 22.03

4.6 Effect of CVAE Structure
In this section, we adjust the structure of CVAE to explore the rea-
sonable manner of utilizing strategy. For normal CVAE, namely the
PoKE, strategy is only used as the output to regularize the latent
space (Eq. (6)). Here, we consider a variant CVAE that strategy is
merely as input condition to model latent variable, i.e. the recogni-
tion network becomes 𝑞𝜙 (z|𝑥, 𝑟,𝑦) and L𝑦 is ignored. We conduct
quantitative and visualization experiments to compare these two
structures of CVAE.

Table 5 shows that the overall performance of variant CVAE
drops a lot, especially in diversity. Meanwhile, the visualization in
Figure 5(b) exhibits that the latent space is independent of strategy,
so strategy information is vanished from the latent variable. This
demonstrates that only taking strategy as input is inadequate to
model an informative latent space. In contrast, PoKE has a better
diversity (Table 5) and can learn a meaningful latent space highly
correlatedwith the support strategy (Figure 5(a)). This demonstrates
that PoKE effectively regularizes the latent space and incorporates
the informative latent variable into decoder to generate diverse
responses.

4.7 Ablation Study
To understand the importance of prior knowledge and latent vari-
able for providing better emotional support, we conduct an ablation
study to investigate the effect of the key components in PoKE. We
design several variants of PoKE by removing some specific parts:
PoKE w/o e. Remove the prior knowledge of exemplars, i.e. the
the denoised exemplars vector e is excluded from memory vectors.
PoKE w/o T. Remove the prior knowledge of strategy sequence,
i.e. the first-order Markov transition matrix T of strategy is ignored
when modeling the distribution of strategy.
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Table 7: An example of ESConv and the responses generated from PoKE and other SOTA models. The retrieved context-related
exemplars are also displayed. Orange text denotes the strategy label of exemplar. Relevant parts have the same color.

Situation My partner broke up with me, but he did not tell me the reason why.

Seeker : I feel like I am in depression.
Supporter : [Question] I’m sorry to hear that. What do you think may have led up to these feelings of being depressed?

Context Seeker : My partner broke up with me impromptu.
Supporter : [Self-disclosure] I’ve been through a few bad breakups myself in the past, so I know how you must be feeling right now.
Seeker : How did you deal with them, and specifically what was your coping mechanism?

Exemplars [Affirmation and Reassurance] I can understand your situation. You think that its normal for you, but other has different outlook.
...
[Providing suggestions] I tried to focus on other areas of my life and to critically reflect on my relationship. Largely, I threw myself
into my work and tried to better that aspect of my life, and hung out with people that I knew cared about me.

BlenderBot-Joint I have been able to cope with my ex by talking to him about my feelings. I have found that talking to people helps me to cope.

MISC∗ Have you considered seeing a therapist?

PoKE I can definitely relate to that. I have been in that situation, and it really helped to get outside and have a good conversation
about why I feel that way. I think that it is important to remember to think about the bright side of your relationship, too.

Gold Response
Ha, well at first I cried and was mad and just moped and hated everything, but eventually I got tired of no getting anything out of my
days. I slowly realized that I had put myself in slow motion and then slowly started to do things I used to do to maybe come out of it.

PoKE w/o z. The CVAE module is removed, and we directly use
input conditions instead of latent variable to predict the strategy.
In addition, the latent variable z is removed from memory vectors.

Table 6 shows the results of ablation studies. We can find that
almost all variants perform worse than the PoKE, which verifies
each component in PoKE. The results of PoKE w/o e and w/o T
show that both generation quality and diversity get worse after
removing prior knowledge. This suggests that explicitly using prior
knowledge in historical conversations benefits more relevant re-
sponses, and plenty of various exemplars help generate responses
with higher diversity. However, compared to PoKE, the PPL of
PoKE w/o e improves slightly. We speculate that exemplars con-
tain some token-level noise, thus impairing fluency. We leave the
research of denoising exemplars at the token-level as future work.
Regarding the PoKE w/o e, D-1 and D-2 drop by a large margin.
This result is as expected because the latent variable models the
one-to-many mapping relationship of strategy. By sampling latent
variable, randomness is introduced to strategy distribution and
enables infrequent strategies to be considered.

5 CASE STUDY
Table 7 shows an example of ESConv and the responses generated
from PoKE and other SOTA models. From the seeker’s situation, we
can know the seeker has emotional stress of breaking up with his
partner, and he is asking for suggestions. BlenderBot-Joint directly
provide a suggestion, but it is not suitable or commonly used. MISC
uses the COMET to infer the commonsense that seeing a therapist
may help overcome the problem and utilizes it for guiding genera-
tion, but it does not combine its own experience. The gold reference
shares his solutions of getting rid of emotional stress. Compared
with them, PoKE makes a better response thanks to latent variable
and prior knowledge. PoKE expresses a mixed strategy smoothly,
i.e. affirming the seeker before sharing advice. Additionally, PoKE
utilizes abundant reference information about strategy expression

and suggestions from exemplars explicitly or implicitly. For in-
stance, (1) “I can definitely..." expresses the strategy of Affirmation
and Reassurance by explicitly referring to the sentence pattern of
the first exemplar, and (2) “get outside ..." as well as “think about ..."
implicitly incorporate the suggestions of the last exemplar into the
response. Besides, we visualize the correlation between the prior
knowledge of strategy and the predicted strategy distribution in
Figure 7, which is detailed in Appendix C.2.

6 CONCLUSION
In this paper, we explore the emotional support conversation under
the setting of no external knowledge and propose PoKE, a prior
knowledge enhanced model with latent variable to provide emo-
tional support in conversation. The proposed PoKE could utilize the
prior knowledge in terms of exemplars and strategy sequence, and
models the one-to-many mapping relationship of strategy. Then,
PoKE utilizes strategy distribution to denoise the exemplars and
applies a memory schema to incorporate encoded information into
decoder. The experiments on automatic and human evaluation
demonstrate the superiority and diversity of PoKE without external
knowledge. Moreover, the analytical experiments prove that PoKE
can effectively utilize prior knowledge to generate better emotional
support and learn an informative latent variable to respond with
high diversity. In future work, we will further refine our model to
outperform the methods using external knowledge and explore the
manner of efficiently incorporating external knowledge.
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A ESCONV DATASET
The detailed statistics of the original ESConv are shown in Table
8. The long average length of turns (29.8) indicates that the ESC
task needs more turns to provide an effective emotional support
for seeker.

Table 8: Statistics of ESConv.

Category Total Support Seeker

# Dialogues 1,053 - -
# Utterances 31,410 14,855 16,555
Avg. length of turns 29.8 14.1 15.7
Avg. length of utterances 17.8 20.02 15.7
Avg. length of situations 22.85 - -

B IMPLEMENTATION DETAILS
Similar to BlenderBot-Joint [21] and MISC [37], we use BlenderBot
Small [31] as our model’s backbone. The default size of hidden
state 𝑑ℎ in BlenderBot Small is 512, and the dimension of latent
variable 𝑑𝑧 is set as 64 by parameter search. According to the result
in Section 4.5, we retrieve 𝑘 = 10 exemplars for each context. The
coefficient 𝜆 in Eq. (13) is set to 1.0. For stable optimization, the
total KL annealing steps with 10000, strategy annealing rate 𝛽 with
1 × 10−3 and steps 𝑇 with 1000 achieves the best performance. The
batch size of training and validation is set to 20 and 50 respectively.
We use optimizer AdamW [22] to optimize our model. We train
the model for 8 epochs and select the best models based on the
perplexity of the validation data. For decoding, we employ Top-𝑘
and Top-𝑝 sampling methods in previous work [21], and set 𝑘 = 30,
𝑝 = 0.9, temperature 𝜏 = 0.9 and repetition penalty to 1.03. For
a fair comparison, all methods are implemented using the same
hyperparameters and on the Tesla V100 GPU.

C PRIOR KNOWLEDGE OF STRATEGY
C.1 Markov Transition Matrix of Strategy
The first-order Markov transition matrix T ∈ R(𝑚+1)×𝑚 of strategy
calculated in the training set is shown in Figure 6. The transition
matrix T containing prior knowledge of strategy selection is sim-
ple but practical in ESC task, which is demonstrated in Section
4.7. From this matrix, we can find useful prior knowledge about
general patterns of strategy selection. For instance, supporters tend
to take Question as a conversation starter to acquire more seeker’s
information. After sharing the similar difficulties they faced, sup-
porters tend to use Providing suggestions to give advice based on
their experience, and so on.

C.2 Applied in Case Study
For the case in Table 7, we visualize the correlation between the
prior knowledge of strategy and the predicted strategy distribution
in Figure 7. In that case, the previous strategy taken by the supporter
is Self-disclosure. According to the first-order Markov transition
matrix T in Figure 6, we can obtain the transition probability of the
strategy Self-disclosure. Besides, we use Eq. (8) to predict the strategy

Figure 6: First-order Markov transition matrix T of strategy
calculated in training set. START means the current con-
versation turn is the first round, and there is no previous
strategy.

Figure 7: The visualization of transition probability of the
previous strategy Self-disclosure taken by the supporter and
the predicted distribution in case study.

distribution via latent variable and transition probability. Figure
7 shows that the two distributions have a similar pattern, such as
the maximum probability of Providing Suggestions and the most
unlikely strategy Restatement or Paraphrasing. This indicates that
the simple transition matrix of strategy can provide practical prior
knowledge for current strategy decisions. Moreover, according to
the predicted strategy distribution, PoKE can further adjust strategy
distribution based on the current context (e.g. higher probability of
Question and Self-disclosure).

D CONDITIONAL VARIABLE AUTOENCODER
Mathematically, our goal is to maximize the conditional likelihood
of response 𝑟 for the given conditions 𝑥 :

𝑝 (𝑟 |𝑥) =
∫

𝑝 (𝑟 |z, 𝑥)𝑝 (z|𝑥)𝑑z, (15)
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where 𝑝 (z|𝑥) involves an intractable marginalization over the la-
tent variable z. To solve that probelm and model the latent variable,
CVAE uses a prior network 𝑝𝜃 (z|𝑥) to approximate 𝑝 (z|𝑥), and
a recognition network 𝑞𝜙 (z|𝑥, 𝑟 ) to approximate true posterior
𝑝 (z|𝑥, 𝑟 ). In general, the latent variables from prior network and
recognition network are assumed to fit multivariate Gaussian distri-
bution with a diagonal covariance matrix, i.e. 𝑝𝜃 (z|𝑥) ∼ N (𝝁,𝝈2I)
and 𝑞𝜙 (z|𝑟, 𝑥) ∼ N (𝝁 ′,𝝈 ′2I). Then, CVAE can be trained by maxi-
mizing a variational lower bound, consisting of two terms: negative
likelihood loss of decoder and K-L regularization:

L𝐸𝐿𝐵𝑂 (𝜃, 𝜙 ; 𝑟, 𝑥) = L𝑛𝑙𝑙 + L𝑘𝑙
= E𝑞𝜙 (z |𝑥,𝑟 ) [log𝑝𝜃 (𝑟 |z, 𝑥)]

− 𝐾𝐿
(
𝑞𝜙 (z|𝑟, 𝑥)∥𝑝𝜃 (z|𝑥)

)
≤ log𝑝 (𝑟 |𝑥), (16)

where 𝑝𝜃 (𝑟 |z, 𝑥) is the decoder network for generation, which is
illustrated in Section 3.4.

In CVAE, both the prior network and recognition network apply
the structure of multilayer perceptron, and then we can calculate
the mean 𝝁 ∈ R𝑑𝑧 and variance 𝝈 ∈ R𝑑𝑧 in multivariate Gaussian
distribution by:[

𝝁
log

(
𝝈2) ]

= MLP𝑝 (𝑥) = W𝑝 [c; s; p] + b𝑝 , (17)[
𝝁 ′

log
(
𝝈 ′2) ]

= MLP𝑞 (𝑥, 𝑟 ) = W𝑞 [c; s; p; r] + b𝑞, (18)

whereW𝑝 ∈ R2𝑑𝑧×3𝑑ℎ , b𝑝 ∈ R2𝑑𝑧 ,W𝑞 ∈ R2𝑑𝑧×4𝑑ℎ , b𝑞 ∈ R2𝑑𝑧 , and
r is the representation of response reference obtained in the similar
way to Eq. (2) and Eq. (3). Then we use the reparameterization
trick [13] to sample latent variable z. During training, we sample
latent variables from the recognition network and prior network
to optimize the CVAE by Eq. (5). While during inference, there is
no response reference, so we only sample latent variable from the
prior network and pass it to the decoder for generation. For more
mathematical details, please refer to [13].
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